Rabu, 30 Agustus 2017

termodinamika



Termodikamika

Pengertian Termodinamika

Termodinamika berasal dari bahasa Yunani dimana Thermos yang artinya panas dan Dynamic yang artinya perubahan. Termodinamika adalah suatu ilmu yang menggambarkan usaha  untuk mengubah kalor (perpindahan energi yang disebabkan perbedaan suhu) menjadi energi serta sifat-sifat pendukungnya. Termodinamika berhubungan erat dengan fisika energi, panas, kerja, entropi dan kespontanan proses. Termodinamika juga berhubungan dengan mekanika statik. Cabang ilmu fisika ini mempelajari suatu pertukaran energi dalam bentuk kalor dan kerja, sistem pembatas dan lingkungan. Aplikasi dan penerapan termodinamika bisa terjadi pada tubuh manusia, peristiwa meniup kopi panas, perkakas elektronik, Refrigerator, mobil, pembangkit listrik dan industri.


Hukum-Hukum Termodinamika
Termodinamika mempunyai hukum-hukum pendukungnya. Hukum-hukum ini menerangkan bagaimana dan apa saja konsep yang harus diperhatikan. Seperti peristiwa perpindahan panas dan kerja pada proses termodinamika. Sejak perumusannya, hukum-hukum ini sudah menjadi hukum penting dalam dunia fisika yang berhubungan dengan termodinamika. Penerapan hukum-hukum ini juga digunakan dalam berbagai bidang seperti bidang ilmu lingkungan, otomotif, ilmu pangan, ilmu kimaia dan lain-lain. Berikut hukum-hukum termodinamika :
  1. Hukum I termodinamika (Kekekalan Energi dalam Sistem)
Energi tidak bisa diciptakan maupun dimusnahkan. Manusia hanya bisa mengubah bentuk energi dari bentuk energi satu ke energi lainnya. Dalam termodinamika, jika sesuatu diberikan kalor, maka kalor tersebut akan berguna untuk usaha luar dan mengubah energi dalam.
Bunyi Hukum I Termodinamika
“untuk setiap proses apabila kalor Q diberikan kepada sistem dan sistem melakukan usaha W, maka akan terjadi perubahan energi dalam ΔU = Q – W”.
Dimana U menunjukkan sifat dari sebuah sistem, sedangkan W dan Q tidak. W dan Q bukan fungsi Variabel keadaan, tetapi termasuk dalam proses termodinamika yang bisa merubah keadaan. U merupakan fungsi variabel keadaan (P,V,T,n).
W bertanda positif bila sistem melakukan usaha terhadap lingkungan dan negatif jika menerima usaha lingkungan.
Q bertanda positif jika sistem menerima kalor dari lingkungan dan negatif jika melepas kalor pada lingkungan.
Perubahan energi dari sebuah sistem hanya tergantung pada transfer panas ke dalam sistem dan kerja yang dilakukan oleh sistem dan tidak bergantung pada proses yang terjadi. Pada hukum ini tidak ada petunjuk adanya arah perubahan dan batasan-batasan lain.

Rumus Hukum Termodinamika I
Secara matematis hukum I termodinamika dapat dirumuskan sebagai berikut:
Q = ∆U+W
Dengan ketentuan, jika:
Q(+)
sistem menerima kalor
OR
sistem melepas kalor
W(+)
sistem melakukan usaha
W(-)
sistem dikenai usaha
U(+) terjadi penambahan energi dalam
U(-) terjadi penurunan energi dalam
ΔU = Q − W
Keterangan :
ΔU = perubahan energi dalam (joule)
Q = kalor (joule)
W = usaha (joule)

Proses-proses
Isobaris
tekanan tetap
Isotermis
suhu tetap ΔU = 0
Isokhoris
volume tetap (atau isovolumis atau isometric) W = 0
Adiabatis
tidak terjadi pertukaran kalor Q = 0
Siklus
daur ΔU = 0
Usaha
W = P(ΔV)
Isobaris
W = 0
Isokhoris
W = nRT ln (V2 / V1)
Isotermis
W =
3/2 nRΔT Adiabatis ( gas monoatomik)
Keterangan :
T = suhu (Kelvin, jangan Celcius)
P = tekanan (Pa = N/m2)
V = volume (m3)
n = jumlah mol
1 liter = 10−3m3
1 atm = 105 Pa ( atau ikut soal!)
Jika tidak diketahui di soal ambil nilai ln 2 = 0,693

Mesin Carnot
η = ( 1 − Tr / Tt ) x 100 %
η = ( W / Q1 ) x 100%
W = Q1 − Q2

Keterangan :
η = efisiensi mesin Carnot (%)
Tr = suhu reservoir rendah (Kelvin)
Tt = suhu reservoir tinggi (Kelvin)
W = usaha (joule)
Q1 = kalor masuk / diserap reservoir tinggi (joule)
Q2 = kalor keluar / dibuang reservoir rendah (joule)

2. Hukum II termodinamika (Arah reaksi sistem dan batasan)
2.  Hukum II termodinamika
Hukum kedua ini membatasi perubahan energi mana yang bisa terjadi dan yang tidak. Pembatasan ini dinyatakan dengan berbagi cara, yaitu :
“Hukum II termodinamika dalam menyatakan aliran kalorKalor mengalir secara spontan dari benda bersuhu tinggi ke benda bersuhu rendah dan tidak mengalir secara spontan dalam arah kebalikannya”
Hukum II termodinamika dalam pernyataan entropi (besaran termodinamika yang menyertai suatu perubahan setiap keadaan dari awal sampai akhir sistem dan menyatakan ketidakteraturan suatu sistem)
Total entropi semesta tidak berubah ketika proses reversibel terjadi dan bertambah ketia proses irreversible terjadi.
3.    Hukum III termodinamika
Hukum ketiga termodinamika terkait dengan temperatur nol absolut. Hukum ini menyatakan bahwa pada saat suatu sistem mencapai temperatur nol absolut (temperatur Kelvin) semua proses akan berhenti dan entropi sistem akan mendekati nilai minimum.hukum ini jugga menyatakn bahwa entropi benda berstruktur kristal sempurna pada temperatur nol absolut bernilai nol

Sistem-Sistem Termodinamika

 Ada tiga jenis sistem berdasarkan jenis pertukaran yang terjadi antara sistem dan lingkungannya, yakni sebagai berikut :
1. Sistem terbuka
Sistem yang menyebabkan terjadinya pertukaran energi (panas dan kerja) dan benda (materi) dengan lingkungannya. Sistem terbuka ini meliputi peralatan yang melibatkan adanya suatu aliran massa kedalam atau keluar sistem seperti pada kompresor, turbin, nozel dan motor bakar. Sistem mesin motor bakar yaitu ruang didalam silinder mesin, dimana campuran bahan bahan bakar dan udara masuk kedalam silinder, dan gas buang keluar sistem. Pada sistem terbuka ini, baik massa maupun energi bisa melintasi batas sistem yang sifatnya permeabel. Dengan demikian, pada sistem ini volume dari sistem tidak berubah sehingga disebut juga dengan control volume.
Perjanjian yang kita gunakan untuk menganalisis sistem yaitu :
  • Untuk panas (Q) bernilai positif jika diberikan kepada sistem dan bernilai negatif bila keluar dari sistem
  • Untuk usaha (W) bernilai positif jika keluar dari sistem dan bernilai negatif jika diberikan (masuk) kedalam sistem.
2. Sistem tertutup
Sistem yang mengakibatkan terjadinya pertukaran energi (panas dan kerja) tetapi tidak terjadi pertukaran zat dengan lingkungan. Sistem tertutup terdiri atas suatu jumlah massa yang tertentu dimana massa ini tidak bisa melintasi lapis batas sistem. Tetapi, energi baik dalam bentuk panas (heat) maupun usaha (work) bisa melintasi lapis batas sistem tersebut. Dalam sistem tertutup, walaupun massa tidak bisa berubah selama proses berlangsung, tapi volume bisa saja berubah disebabkan adanya lapis batas yang bisa bergerak (moving boundary) pada salah satu bagian dari lapis batas sistem tersebut. Contoh sistem tertutup yaitu suatu balon udara yang dipanaskan, dimana massa udara didalam balon tetap, tetapi volumenya berubah dan energi panas masuk kedalam masa udara didalam balon.
Suatu sistem bisa mengalami pertukaran panas atau kerja atau keduanya, biasanya dipertimbangkan sebagai sifat pembatasnya:
  • Pembatas adiabatik: tidak memperbolehkan pertukaran panas.
  • Pembatas rigid: tidak memperbolehkan pertukaran kerja.
Dikenal juga istilah dinding, ada dua jenis dinding yaitu dinding adiabatik dan dinding diatermik. Dinding adiabatik yaitu dinding yang menyababkan kedua zat mencapai suhu yang sama dalam waktu yang lama (lambat). Untuk dinding adiabatik sempurna tidak memungkinkan terjadinya suatu pertukaran kalor antara dua zat. Sedangkan dinding diatermik yaitu dinding yang memungkinkan kedua zat mencapai suhu yang sama dalam waktu yang singkat (cepat).
3. Sistem terisolasi
Sistem terisolasi ialah sistem yang menyebabkan tidak terjadinya pertukaran panas, zat atau kerja dengan lingkungannya. Contohnya : air yang disimpan dalam termos dan tabung gas yang terisolasi. Dalam kenyataan, sebuah sistem tidak bisa terisolasi sepenuhnya dari lingkungan, karena pasti ada terjadi sedikit pencampuran, walaupun hanya penerimaan sedikit penarikan gravitasi. Dalam analisis sistem terisolasi, energi yang masuk ke sistem sama dengan energi yang keluar dari sistem.
Karakteristik yang menentukan sifat dari sistem disebut dengan property (koordinat sistem/variabel keadaan sistem), seperti tekanan (p), temperatur (T), volume (v), masa (m), viskositas, konduksi panas dan lain-lain. Selain itu ada juga koordinat sistem yang didefinisikan dari koordinat sistem yang lainnya seperti, berat jenis, volume spesifik, panas jenis dan lain-lain. Suatu sistem bisa berada pada suatu kondisi yang tidak berubah, jika masing-masing jenis koordinat sistem tersebut bisa diukur pada semua bagiannya dan tidak berbeda nilainya. Kondisi tersebut disebut sebagai keadaan (state) tertentu dari sistem, dimana sistem memiliki nilai koordinat yang tetap. Jika koordinatnya berubah, maka keadaan sistem tersebut disebut mengalami perubahan keadaan. Suatu sistem yang tidak mengalami perubahan keadaan disebut sistem dalam keadaan seimbang (equilibrium).
Proses Termidinamika
1.  Usaha oleh Sistem terhadap Lingkunggan
Usaha yang dilakukan sistem pada lingkungannya merupakan ukuran energi yang dipindahkan dari sistem ke lingkungan. Gambar tersebut menunjukkan suatu gas di dalam silinder tertutup dengan piston (penghisap) yang dapat bergerak bebas tanpa gesekan. Pada saat gas memuai, piston akan bergerak naik sejauh Δs . Apabila luas piston A, maka usaha yang dilakukan gas untuk menaikkan piston adalah gaya F dikalikan jarak Δs . Gaya yang dilakukan oleh gas merupakan hasil kali tekanan P dengan luas piston A, sehingga:
W = F . s
W = P . A . ∆s
W = P . V  atau  W = P ( V2 - V1 )
karena A. Δs = ΔV , maka:
Ketererangan :
W = usaha ( J)
V1 = volume mula-mula (m3)
P = tekanan (N/m2)
V2= volume akhir (m3)
ΔV = perubahan volume (m3)
dW = F . d
= F . P . A
ds   = PdV
Apabila V2 > V1, maka usaha akan positif (W > 0). Hal ini berarti gas (sistem) melakukan usaha terhadap lingkungan. Apabila V2 < V1, maka usaha akan negatif (W < 0). Hal ini berarti gas (sistem) menerima usaha dari lingkungan. Untuk gas yang mengalami perubahan volume dengan tekanan tidak konstan, maka usaha yang dilakukan sistem terhadap lingkungan dirumuskan:
Jika volume gas berubah dari V1 menjadi V2, maka:
Besarnya usaha yang dilakukan oleh gas sama dengan luas daerah di bawah kurva pada diagram P-V
Contoh Soal :
1.        Suatu gas dipanaskan pada tekanan tetap sehingga memuai, seperti terlihat pada gambar. Tentukanlah usaha yang dilakukan gas. (1 atm = 105 N/m2)

Penyelesaian :
Dik       : p = 2 atm
V1 = 0,3 L
V2 = 0,5 L.
1 L = 1 dm3 = 10–3 m3
Dit       : W?
Jawab  :
W = p ( ΔV) = p (V2 – V1)
= 2 × 105 N/m2 (0,5 L – 0,2 L) × 10–3 m3 = 60 Joule.
2.  Proses Termodinamika Gas

·         Proses  Isobarik

Proses Isobarik adalah proses perubahan keadaan sistem pada tekanan tetap.

W   = P ( V2 -  V1 )
= P (∆V)
Jika gas melakukan proses termodinamika dengan menjaga tekanan tetap konstan, gas dikatakan melakukan proses isobarik. Karena gas berada dalam tekanan konstan, gas melakukan usaha (W = pV). Kalor di sini dapat dinyatakan sebagai kalor gas pada tekanan konstan Qp. Berdasarkan hukum I termodinamika, pada proses isobarik berlaku:
QP = W + ∆V
Sebelumnya telah dituliskan bahwa perubahan energi dalam sama dengan kalor yang diserap gas pada volume konstan. QV =∆U
Dari sini usaha gas dapat dinyatakan sebagai : W = Qp − QV
Jadi, usaha yang dilakukan oleh gas (W) dapat dinyatakan sebagai selisih energi (kalor) yang diserap gas pada tekanan konstan (Qp) dengan energi (kalor) yang diserap gas pada volume konstan (QV).
gambaran grafiknya:


  • Proses Isokhorik
Proses Isokhorik adalah    proses perubahan keadaan sistem pada volume tetap.
W = P (∆V) = P (0)
W = 0

gambaran grafiknya:


  • Proses Isotermal
Proses Isotermal adalah proses perubahan keadaan suhu tetap.Proses ini mengikuti proses hukum Boyle, yaitu: PV = KONSTAN.
Dari persamaan gas ideal PV = nRT , Karena nRT merupakan bilangan     tetap, maka grafik P - V berbentuk hiperbola.
Proses isotermik dapat digambarkan dalam grafik p – V di bawah ini. Usaha yang dilakukan sistem dan kalor dapat dinyatakan sebagai:
Q = W = nRT  1n 
gambaran grafiknya:


  • Proses Adiabatik
Proses adiabatik adalah proses perubahan keadaan  sistem tanpa adanya kalor yang masuk ke sistem atau  keluar dari sistem (gas) yaitu :
Q = 0

Rabu, 16 Agustus 2017

hukum hukum kemagnetan



Bunyi-Bunyi Hukum Listrik dan Magnet

.      1.    BUNYI HUKUM COULOMB
“gaya yang dilakukan oleh suatu muatan pada titik lainnya bekerja sepanjang garis yang menghubungkan kedua muatantesebut. Besarnya gaya berbanding terbalik kuadrat jaarak keduanya, berbanding lurus dengan perkalian kedua muatan”.

2.  2.     BUNYI HUKUM GAUSS
“jumlah garis-garis medan listrik (fluks listrik) yang menembus suatu permukaan tertutup sama dengan jumlah muatan listrik yang dilingkupi oleh permukaan tertutup itu dibagi dengan permitivitas udara ”.

3.    3.   BUNYI HUKUM OHM
“Besar arus listrik yang mengalir melalui sebuah penghantar selalu berbanding lurus dengan beda potensial yang diterapkan kepadanya”. Sebuah benda penghantar dikatakan mematuhi hukum Ohm apabila nilai resistansinya tidak bergantung terhadap besar dan polaritas beda potensial yang dikenakan kepadanya.

4.   4.    BUNYI HUKUM KIRCHOFF
a.      Hukum Kirchoff I
“jumlah kuat arus yang masuk dalam titik percabangan sama dengan jumlah kuat arus yang keluar dari titik percabangan”.

b.    5.   Hukum Kirchoff II
“dalam rangkaian tertutup, jumlah aljabar GGL (E) dan jumlah penurunan potensial adalah nol”.


5.    6. BUNYI HUKUM BIOT dan SAVART
“Gaya akan dihasilkan oleh arus listrik yang mengalir pada suattu penghantar yang berada diantara medan magnetik”.

6.   7.    BUNYI HUKUM AMPERE
“Intergral garis induksi magnetik B melalui lintasan tertutup sama dengan  kali jumlah yang terlingkupi oleh lintasan itu”.
Hal ini juga merupakan kebalikan dari hukum faraday, dimana faraday memprediksikan bahwa tegangan induksi akan timbul pada penghantar yang bergerak dan memotong medan magnetik. Hukum ini diaplikasikan pada mesin-mesin listrik, dan gambar 2 akan menjelaskan mengenai fenomena tersebut.

Gambar 2. Hukum Ampere-Biot-Savart, Gaya induksi Elektromagnetik.

7.     8.  BUNYI HUKUM FARADAY
“GGL induksi yang timbul antara ujung-ujung loop suatu penghantar berbanding lurus denngan laju perubahan fluks magnetik yang dilingkupi oleh loop penghantar tersebut”.
Hal ini juga merupakan kebalikan dari hukum faraday, dimana faraday memprediksikan bahwa tegangan induksi akan timbul pada penghantar yang bergerak dan memotong medan magnetik. Hukum ini diaplikasikan pada mesin-mesin listrik, dan gambar 2 akan menjelaskan mengenai fenomena tersebut.


Kedua pernyataan beliau diatas menjadi hukum dasar listrik yang menjelaskan mengenai fenomena induksi elektromagnetik dan hubungan antara perubahan flux dengan tegangan induksi yang ditimbulkan dalam suatu rangkaian, aplikasi dari hukum ini adalah pada generator. Gambar 1 akan menjelaskan mengenai fenomena tersebut.

Gambar 1. Hukum Faraday, Induksi Elektromagnetik.

8.    9.   BUNYI HUKUM LENZ
“Arah arus induksi pada suatu rangkaian adalah sedemikian rupa sehingga menimbulkan medan magnetik induksi yang menentang perubahan medan magnetik ( arus induksi berusaha mempertahankan agar fluks magnetik total adalah konstan )”.
Hukum Lenz inilah yang menjelaskan mengenai prinsip kerja dari mesin listrik dinamis (mesin listrik putar) yaitu generator dan motor.


Gambar 3. Hukum Lenz- gaya aksi dan reaksi.


Konversi Energi Elektromekanik

Ketiga hukum dasar listrik diatas terjadi pada proses kerja dari suatu mesin listrik dan hal ini merupakan prinsip dasar dari konversi energi. Secara garis besar, elektromekanik dari mesin listrik dinamis dinyatakan:

“Semua energi listrik dan energi mekanik mengalir kedalam mesin, dan hanya sebagian kecil saja dari energi listrik dan energi mekanik yang mengalir keluar mesin (terbuang) ataupun disimpan didalam mesin itu sendiri, sedangkan energi yang terbuang tersebut dalam bentuk panas”

Sedangkan hukum kekelan energi pertama menyatakan bahwa:

“energi tidak dapat diciptakan, namun dapat berubah bentuk dari satu bentuk energi ke bentuk energi lainnya”

Aplikasi dari 4 dasar prinsip kerja mesin listrik dinamis dan hukum kekalan energi digambarkan sebagai berikut:


Gambar 4. Prinsip Konversi Energi Elektromekanik.

Tanda positif (+) menunjukkan energi masuk, sedangkan tanda negatif (-) menunjukkan energi keluar. Panas yang dihasilkan dari suatu mesin yang sedang melakukan proses selalu dalam tanda negatif (-).

Sedangkan untuk energi yang tersimpan, tanda positif (+) menujukkan peningkatan energi yang tersimpan, sedangkan tanda negatif (-) menunjukkan pengurangan energi yang tersimpan.

Keseimbangan dari bentuk-bentuk energi diatas tergantung dari nilai efisiensi mesin dan sistem pendinginannya.

semoga bermanfaat, http://dunia-listrik.blogspot.com
Fluksi Medan Magnet

Medan magnet tidak bisa kasat mata namun buktinya bisa diamati dengan kompas atau serbuk halus besi. Daerah sekitar yang ditembus oleh garis gaya magnet disebut gaya medan magnetik atau medan magnetik. Jumlah garis gaya dalam medan magnet disebut fluksi magnetik.

Gambar 1. Belitan kawat berinti udara dan garis-garis gaya magnet.

Menurut satuan internasional besaran fluksi magnetik (Φ) diukur dalam Weber, disingkat Wb dan didefinisikan dengan:

”Suatu medan magnet serba sama mempunyai fluksi magnetik sebesar 1 weber bila sebatang penghantar dipotongkan pada garis-garis gaya magnet tsb selama satu detik akan menimbulkan gaya gerak listrik (ggl) sebesar satu volt”

Weber = Volt x detik

[Φ] = 1 Voltdetik = 1 Wb

Belitan kawat yang dialiri arus listrik DC maka didalam inti belitan akan timbul
medan magnet yang mengalir dari kutub utara menuju kutub selatan, seperti diperlihatkan pada gambar 2.

Gambar 2. Daerah Pengaruh medan magnet.

Pengaruh gaya gerak magnetik akan melingkupi daerah sekitar belitan yang diberikan warna arsir. Gaya gerak magnetik (θ) sebanding lurus dengan jumlah belitan (N) dan besarnya arus yang mengalir (I), secara singkat kuat medan magnet sebanding dengan amper-lilit.

θ = I . N

[θ] = Amper-turn

dimana;

θ = Gaya gerak magnetik
I = Arus mengalir ke belitan
N = Jumlah belitan kawat

Contoh : Belitan kawat sebanyak 500 lilit, dialiri arus 2 A.
Hitunglah a) gaya gerak magnetiknya b) jika kasus a) dipakai 1000 lilit berapa besarnya arus ?
Jawaban :
a) θ = I . N = 500 lilit x 2 A = 1.000 Ampere-lilit
b) I = θ /N = 1.000 Amper-lilit/1000 lilit = 1 Ampere.


Kuat Medan Magnet

Dua belitan berbentuk toroida dengan ukuran yang berbeda diameternya. Belitan toroida yang besar memiliki diameter lebih besar, sehingga keliling lingkarannya lebih besar. Belitan toroida yang kecil tentunya memiliki keliling lebih kecil. Jika keduanya memiliki belitan (N) yang sama, dan dialirkan arus (I) yang sama maka gaya gerak magnet (Θ = N.I) juga sama. Yang akan berbeda adalah kuat medan magnet (H) dari kedua belitan diatas.

Persamaan kuat medan magnet adalah:



Dimana:
H = Kuat medan magnet
lm = Panjang lintasan
θ = Gaya gerak magnetik
I = Arus mengalir ke belitan
N= Jumlah belitan kawat

Contoh : Kumparan toroida dengan 6.000 belitan kawat, panjang lintasan magnet 30cm, arus yang mengalir sebesar 200 mA. Hitung besarnya kuat medan magnetiknya
Jawaban :
H = I.N/Im = 0,2 A. 6.000 / 0,3 = 4000 A/m

Kerapatan Fluksi Magnet

Efektivitas medan magnetik dalam pemakaian sering ditentukan oleh besarnya “kerapatan fluksi magnet”, artinya fluksi magnet yang berada pada permukaan yang lebih luas kerapatannya rendah dan intensitas medannya lebih lemah, sedangkan pada permukaan yang lebih sempit kerapatan fluksi magnet akan kuat dan intensitas medannya lebih tinggi.

Kerapatan fluksi magnet (B) atau induksi magnetik didefinisikan sebagai:

“fluksi persatuan luas penampang”

Satuan fluksi magnet adalah Tesla. Persamaan fluksi magnet adalah:



Dimana;
B = Kerapatan medan magnet
Φ = Fluksi magnet
A = Penampang inti

Contoh : Belitan kawat bentuk inti persegi 50mm x 30 mm, menghasilkan kerapatan fluksi magnet sebesar 0,8 Tesla. Hitung besar fluksi magnetnya.

Jawaban: B = Φ/ A, maka Φ = B.A = 0,08T x (0,05 m x 0,03 m) =
1,2 mWb
RANGKAIAN MAGNET (bag.2)

Permeabilitas Magnet

Daya hantar atau permeabilitas magnet μ merupakan parameter bahan yang menentukan besarnya fluks magnetik. 

Permeabilitas ruang kosong μo  telah terpilih sebagai konstanta referensi.

μo = 1,256 . 10-6  [Weber/ampere x meter]  (Wb/Am  atau  H/m)

Dalam sistem satuan elektromagnet yang lama μo bernilai

μo = 1,256  [Gauss x sentimeter/ampere]  (G•cm/A)

Permeabilitas μ dari setiap bahan yang lain dinyatakan sebagai kelipatan μo .
Pengganda dinamakan permeabilitas relatif  μr, sehingga 

          μ = μo • μr
 
Untuk kebanyakan bahan μr, harganya mendekati satu, hingga permeabilitasnya praktis sama dengan μo .

Pengecualian terhadap keadaan ini ialah bahan feromagnetik; permeabilitas relatif μr jenis bahan tersebut jauh lebih besar daripada satu.

Bahan-bahan feromagnetik adalah

          Kobalt                                                μr       sampai                            70
          Nikel                                        μr       sampai                            200
          Besi dan besi paduan                 μr`      sampai                            100.000

Disebabkan oleh nilai permeabilitasnya yang tinggi, bahan feromagnetik dipergunakan untuk rangkaian magnet, umpamanya untuk magnet listrik (elektromagnet) dalam mesin listrik dan transformator.

Rangkaian Magnet

Jejak tertutup arus listrik dinamakan “ Rangkaian Listrik “  (Gambar 16)

Sehubungan dengan itu jejak tertutup untuk fluks magnetik 
dinamakan “ Rangkaian Magnet “  (Gambar 17)


 

Parameter-parameter berikut ini adalah ekuivalen (setara):


Tahanan Ohm R                                                      Reluktansi magnet  RM

Arua Listrik I                                                       Fluks Magnetik Φ

Gaya Gerak Listrik  atau                                        Gaya Gerak Magnetis atau
GGL E yang menggerakkan                                      GGM θ yang menimbulkan
arus melalui rangkaian                                            fluks magnetik


Perbandingan Rangkaian Magnet dan Rangkaian Listrik

Kita telah melihat bahwa “rangkaian listrik” dan “rangkaian magnet” adalah ekuivalen (setara). Oleh sebab itu hubungan matematika dalam kedua rangkaian harus serupa.

Marilah kita pergunakan diagram rangkaian yang sama untuk kedua rangkaian:

Rangkaian Listrik                                     Rangkaian Magnet




GGL E menggerakkan arus I                          GGM θ menghasilkan fluks magnetik
melalui tahanan Ohm R.                                 melalui reluktansi magnet RM.

Kita memiliki Hukum Ohm untuk                    Kita memiliki Hukum Ohm untuk
Rangkaian Listrik:                                        Rangkaian Magnet:

                                                                         

motivasi hidup

assalamualaikum gambar ini memiliki hak cipta sedikit bersyukur banyak berusaha janganlah putus asa ketika mempunyai banyak masala...